Abstract:Text summarization aims to generate a headline or a short summary consisting of the major information of the source text. Recent studies employ the sequence-to-sequence framework to encode the input with a neural network and generate abstractive summary. However, most studies feed the encoder with the semantic word embedding but ignore the syntactic information of the text. Further, although previous studies proposed the selective gate to control the information flow from the encoder to the decoder, it is static during the decoding and cannot differentiate the information based on the decoder states. In this paper, we propose a novel neural architecture for document summarization. Our approach has the following contributions: first, we incorporate syntactic information such as constituency parsing trees into the encoding sequence to learn both the semantic and syntactic information from the document, resulting in more accurate summary; second, we propose a dynamic gate network to select the salient information based on the context of the decoder state, which is essential to document summarization. The proposed model has been evaluated on CNN/Daily Mail summarization datasets and the experimental results show that the proposed approach outperforms baseline approaches.
Abstract:In this paper we present DELTA, a deep learning based language technology platform. DELTA is an end-to-end platform designed to solve industry level natural language and speech processing problems. It integrates most popular neural network models for training as well as comprehensive deployment tools for production. DELTA aims to provide easy and fast experiences for using, deploying, and developing natural language processing and speech models for both academia and industry use cases. We demonstrate the reliable performance with DELTA on several natural language processing and speech tasks, including text classification, named entity recognition, natural language inference, speech recognition, speaker verification, etc. DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users.